
The making of ERS 2.0
Getting Started with Cloud CMS

2017

The Making of ERS 2.0
Getting Started with Cloud CMS

2017.

CONTACT
Samuel Pouyt
samuelpouyt@gmail.com

Executive Summary
The European Respiratory Society (ERS), a non-profit organisation, has,
lately changed its approach on managing its content to accommodate
a rather disparate technological landscape: CMS’s in PhP (Joomla,
Drupal), another in .NET, a custom CRM written in .NET, many small
apps, SAP, some servers on premises, others in the cloud, legacy
systems, etc. After more than 20 years of existence, the ERS has more
than 25 websites that relate to its activity and other projects, a small
communication and marketing team, as well as a small IT team.

 For a small team, it is difficult to manage all those websites as a lot
of time is just spent in maintenance, upgrades, security patches and
other migrations. There is not much time left to improve the existing
websites and develop new features. That is without saying that there
are entirely new website to create. The user experience suffers from
this diversity and as time passes the quality of the digital experience
deteriorates: broken links, missing pages, outdated content, and the
worst legacy technologies that prevent the whole stack from any
further improvements.

 Due to the nature of common CMSs the content was tightly coupled
with the technology necessary to display it. Thus any change of
website implied complicated content migration and a lot of copy
pasting. Mobile apps, need to access the content created in the CMS
thus a way for the app to connect to the CMS to retrieve the content
needs to be implemented. This adds another layer of maintenance
and an additional source of bugs.

 Therefore, we decided to look towards the future and change our
approach. The content, whether it is news, products or anything else is
center to any website, mobile app, and any other platforms (Facebook,
Twitter, etc.). Thus we chose a product that only manages content,
and that is doing only this, but that does it very well. It does not
influence the design nor the technology we want to use to display that
content. It is IOS, Android. PhP, Node, .Net, etc. friendly. It can be fully
integrated in automated workflows. It is a Headless CMS: Cloud CMS.
This type of CMS does not do any assumption on technology or design,
it does not display content, it just serves content as JSON.

 We currently have a central point were we manage our content,
that we do not have to maintain and that provides a customisable
administration interface for our content editors. We are now able to
seamlessly integrate our content within different technologies. We
could also reduce the time we spend on maintenance to improve
the quality of our user experience. We have reduced the amount of
website we need to manage, but we are not yet done. Indeed, we need
to migrate other websites, but we also plan to add some automation
as, for example, AI services to extract keywords, suggest hashtags,
extract topics, a recommendation engine, and many other features.

It was long over due for the European Respiratory Society — one
of the leading medical organisations that brings together physi-
cians, healthcare professionals, scientists and other experts work-
ing in respiratory medicine, with a growing membership represent-
ing over 140 countries worldwide — to revamp its main website
as well as to start standardizing its brand in the digital sphere.

Two solutions were offered to us: do as usual or look towards the
future. We are a small team managing around 25 websites. Some are
purely informational, some are event based. Every year we have few
websites that are decommissioned and new ones that need to be cre-
ated. We also have a member portal — MyERS — where members can
create an account and manage their activities within the ERS, a CRM
— the admin side of the member portal, an abstract platform, an event
management platform, SAP to manage our accounting, etc.

 All these application need to communicate among themselves to
variable degrees, whether it is sending payment information to the
accounting system, check if the user is a member or simply display
content in more than one place e.g. news on the main website or in
an app. Changing the main corporate website allowed us to solve the
content management issue to accommodate, the IT team, but also the
marketing and communication teams. Indeed changing our content
management strategy helped us save a lot of time and simplify our
content editor’s lives.

The usual
way

Until now we have always developed websites using
a CMS, mostly Joomla! to create new websites. We
know that CMS inside out, and we are really able to
produce websites quickly as we have a set of exten-
sions that we have vetted and that solve most of
our typical use cases.

 Going that direction does not require much
thought. We just have to concentrate in the design,
migrate the content and we are all set. Our users
know the CMS and they can, with no training, start
using the new website right away. For few years we
have worked this way, and we know it works, but it
is not an optimal long-term strategy.

Starting a project
The CMS needs to be installed, then all the exten-
sions required by the project. Usually, as the project
is new, the latest versions of those extensions are
installed. We never managed to create a starter
project, as it was not up to date almost as soon as
it was created. And that was an additional element
that we would have needed to maintain. After a few
years, all our websites were using different versions
of those extensions as you never find time to go
through all website to update those. Indeed, if you
want to do these updates in a safe way, ideally you
would have a test version of that website which you
would update before publishing the changes to pro-
duction. Git and modern CI (continuous integration)
workflow do not really help either as many settings
(in Joomla! at least are saved to the database) thus
you cannot always just pull your new files in the

production environment as you need to “ install”
that update or patch, or run some database migra-
tions

 Security patches
The other problem is security updates. Those open
source CMSs (Joomla!, Wordpress, Drupal, etc.) are
very well-know by hackers too, thus security patch-
es need to be constantly implemented, that is if the
website was not already hacked. On one website
that is ok. But when multiplied by 25, the process of
patching eat up a lot of development time. It is time
consuming because to patch a website, you have
to make sure that the patch is compatible with the
installation on which it is deployed. To make sure
that everything works as expected, the patch needs
to be deployed first on a testing environment, then
deployed in production.

Updated or deprecated
extensions
Additionally, extensions have their own update
cycles. Sometimes it might happen that they are not
supported anymore or they are not upgraded to be
compatible with the latest version of the CMS… We
tried to mitigate this risk by choosing extensions
backed by reputable company. But, nevertheless,
those companies have their own plans… It has hap-
pened that we had a website that relied heavily on
such extensions and when the extension was not

supported anymore, it prevented us from updating
the CMS making us face three possible choices: mi-
grate our content to a different extension, write our
own extension based on the one that was not sup-
ported, or do nothing and have an aging website.

Custom code
The code we write is not really reusable even if
we create installable extensions (plugin, compo-
nents or templates). It is difficult to share the code
with other websites as, very often the underlying
database schema is different; thus, to manage all
the edge cases it is sometimes inevitable that the
extensions become extremely complex.

 And if we create a template package that we use on
many websites, we then need to update it on each
website when we want to change something… Very
quickly, we end up having discrepancies on all the
different websites. Indeed some custom compo-
nent need to work slightly differently on different
website and soon enough you have two or more
versions that you need to maintain.

Users
We also need to maintain access rights to all our
CMSs. The solution we chose was to keep it simple
and to create accounts upon request. This choice
of having multiple CMSs made sense at some point
as we could have a website up for few month and
take it down without impacting anything else. On
the other hands, our editors need to login in mul-
tiple administration interface, and remember the
small nuances that each one of them is providing.
We tested some multi-site extension, but they just
complicated maintenance as Joomla! Is not really
build for it. There are of course better CMSs than
Joomla! to manage this use case but by that point in
time our choice had already been made.

Design
The main idea with the redesign of the ERS website
was that we wanted to separate concerns: the de-
sign would be distributed from a central point and
would have nothing to do with the website imple-
mentation, thus we would serve our CSS and JS so
that any website could use it and we could update
all websites at once.

So after multiple iterations on sketch and photo-
shop and concept approval by stakeholders we
created a custom version of bootstrap implement-

ing our designs. We started distributing it. Thus all
new websites started using it and we could manage
it with a simple workflow to publish all the assets.
Our Bootstrap has its own Github repository, can be
tested separately and new versions can be pub-
lished on their own. It is now easy for us to add new
design features to all our websites. Doing so we
solved one of our maintenance problem. We do not
need anymore to create installable templates that
we need to install on each website. We just plug our
CSS and Javascript.

 However, it was not only challenging to manage the
design, but also the content… For example, we have
courses, that we advertise on the main website, but
the registration takes place on MyERS. We display
news on the main website, but also on other web-
sites and apps. Much of the content is — at least in
part — duplicated. For example our content editors
need to create courses in two places: one that man-
ages prices and checks the user status (MyCRM), the
other — where all marketing attributes and other
descriptions are added (CMS).

 If we were able to distribute the design across
websites from a central point, wasn’t it possible to
distribute the content from a central point as well?

The Headless
Meet Cloud CMS

What is Cloud CMS

Cloud CMS website we can find the following
description. “Cloud CMS is a headless, API-first ap-
proach to content management, built around JSON
and a high performance cloud architecture. It deliv-
ers enterprise features, including flexible content
models and a full editorial environment, allowing
your business users to create, manage and publish
fresh content with ease.”

Content is just…
content
This is what a headless CMS, or
an API first CMS does. It manages
content, and this is the only thing
it does… but it does it well. It does
not have any impact on design, it
just serves content via an API. The
only thing that the CMS returns is
JSON (or binaries e.g. documents,
images). Actually everything in
Cloud CMS is JSON: configuration,
models, forms, relations. Cloud
CMS API lets you manage any
aspect of the platform and retrieve
everything as JSON.

Multi-device,
multi-technology
JSON is like the English language for
scientific papers, but for applica-
tions. It is the lingua franca of the
internet. As far as everything is JSON
in Cloud CMS the content is de facto
multi-platform, multi-technology,
multi-device. Cloud CMS lets you get
content with its powerful API but it
also lets you write to it.

 At ERS, we can from our custom CRM
written with .NET create a course:
our business user input all the data
that the CRM needs, the CRM can
push this data to Cloud CMS and
programmatically create an article.
The content editor can then add
marketing information using the

Cloud CMS administration interface to the newly
created article. Then full content, price and market-
ing content can be displayed anywhere, on the main
website, in an app, in the members portal etc. This
really improves the workflows for all teams at ERS,
as different people can seamlessly work together,
saving time but also insure a better quality content.
The content is really centralised, versioned and
easily accessible. Here is how our infrastructure
looks like at the time of writing:

 » Fig. 1 - Few API endpoints

 » Fig. 2 - Partial JSON document

Development
At first sight it seems that choosing a headless CMS
will greatly increase time needed to develop the
website as the whole user interface/experience (UX)
needs to be developed from scratch. Indeed, before,
we were always starting a website from a “base”:
the fresh installation of the CMS, that we were
tweaking for our needs.

But in fact, it was a very liberating experience to
start from a white sheet (or a black screen). Our
code base is much cleaner, as we have only the
functionality we need, we do not have code that we
do not use, as it is part of the functionality that is
shipped with the CMS. This approach gives a lot of
freedom to the development team, whether it is an
agency or an in house team. In fact, when you need
to develop a new website, you can hire subcontrac-

tor and provide them the API documentation, API
keys and they can start using your content right
away! There are no more content migration, syn-
chronisation or replication.

The web development world evolves very quickly,
new standards appear, new frameworks. This is not
a problem, if the developers want to transform the
front-end and use the last framework à la mode,
they have that freedom. The developers can even
have part of the website using one technology,
while the other uses another. Developers loves this
freedom as they can always choose the technology
that works best for a given task. That would have
been difficult to achieve with a traditional CMS.

Fig. 3 - Cloud CMS integration at ERS

Time saver
It might seem that a headless CMS is more dif-
ficult to put in place and that you will need more
time and resources, because you need to develop
everything from scratch (Cloud CMS provides seed
projects for different technologies to get developers
started). This is true to some extent, if we compare
the time needed to deploy a CMS with a ready made
template that was slightly adapted to our needs. In
the past we have deployed brand new websites in
3 days. But these website are not complicated and
are not very customised. They also feel like the CMS
that was used to create them in the first place.

As we have seen, “erasing” the look and feel of the
CMS takes a lot of time as it is necessary to rewrite
all the outputs (views) of all the components, pl-
ugins and module installed on the system. Other-
wise the website does have a look and feel of Joom-
la!, Drupal, or Wordpress. This might be acceptable,
unless you want your brand to be coherent.

This is a lot of work and it takes a lot of time. Some-
times components do not implement very well with
the MVC (Model View Controller) structure of the
CMS, thus core files of the component need to be
modified and the update is not anymore just a click
on a button or a simple package install: a migration
is need in order to preserve the design modifica-
tions.

On the other hand, starting with a white page can
help saving a lot of time by developing personal-
ized views and partials that can easily be reused.
Yes, the initial workload is bigger but when the first

boilerplates are ready, it takes no time to create
new pages.

For the main corporate website of the ERS with
the brand new design we planned 10 days for the
integration into Joomla!, while we planned 6 for the
headless CMS. 4 days do not sound like a lot, but
it quickly increases as soon as we started adding
new features. With our implementation of Bootstrap
ready, we managed to have a fully working website
in less than 25 days of work. As for every project, we
presented it to stakeholders, reworked it a little and
we were ready for launch.

A standard CMS also comes with many features you
do not need as it needs to cover a broad range of
use cases. This is is also true with Cloud CMS, you
have many features like content workflows, version-
ing, task management that help teams collaborate
on content, but these features never get in the way
nor for the user, nor for the developers. When the
content is ready to publish, it is just content and it
can be retrieved as plain content.

 » Fig. 4 - PHP method to get an article based on its slug/alias (part of
the url)

Fig. 5 - Simplified interface for content editors

Technology

What could be better
(and it will)
Cloud CMS can be at first overwhelming. For us the
learning curve was steep, and we are still learning.
Conceptually Cloud CMS is different, as you will see
below, the underlying structure is a content graph.
It changes the way you think about content and the
way it is modelled. Of course, it is possible to re-
produce a traditional structure, but there are much
more efficient ways to work with, create and query
content from a graph, but this needs to be learned…
It is also necessary to learn the Cloud CMS vocabu-
lary: definitions, features, associations, relators,
etc. There is documentation, but it is as huge as the
functionalities of the CMS.

Every aspect of the editor interface can be custom-
ized. It is good, but at first, it is also overwhelming.
The look and feel of the interface is very sleek, but,
in some area, it has a technological touch, a geeky
feel: the impression is that everything can be cus-
tomized. This was a little bit scary at first, until we
found our way.

The Cloud CMS team is continually working to
improve the user experience and functionalities,
the team has helped us a lot and implemented new
features that we had suggested. Thus many aspects
that we have mentioned are getting better and
simpler.

All these options allowed us to provide the users
with a custom experience as well as a simplified
interface that corresponded to our needs but it also

allowed us implement all the enterprise features
we could imagine: complex workflows, versioning,
releases, granularity, etc. As a result, the we found
that the user interface of the CMS is well thought
through and, with experience we know that we can
teach a new content editor in about an hour and
the transition from Joomla! was very easy for them.

All the previously mentioned points are linked to
Cloud CMS’s own successes: an enormous set of
functionalities that somehow they have to give ac-
cess to...

Fig. 6 - Form to edit an article

MongoDB
One of the excellent features of Cloud CMS that is
the fact that it uses MongoDB to store content. This
schema less document store is very flexible as it
only saves the the used properties and new proper-
ties can easily be added later on.

It also helps migration as the data can be of any
shape. It is much simpler than editing the schema
of a traditional relational database and you can do
it right from the CMS, with a visual interface or right
in the JSON, but this is not all.

Content can also be queried through the API using
MongoDB operators such as “$in” or Elasticsearch
queries can be used which guarantee that the
search queries are as quick and flexible as possible.

Content Model
The content model is defined using a JSON schema.
The schema can be created, updated, deleted with
the API, but the administration interface let you
quickly update it as well. The content model can in-
herit properties from other models and you can add
new properties with “features”. Using features we
add different options to all our content instances
without having to maintain them inside the content
model. For example we use a publication features
that adds a check box to let the user unpublish an
item or, for events, we add latitude and longitude in
order to display a map on the website or to search
by location.

Forms
It is as easy to create or edit forms as it is to edit
the model. The forms engine is called Alpaca and
it is an open source library maintained by the
Cloud CMS team. It can render html forms based
on a JSON schema. It is quite easy to use and very
flexible. We use a very complex form that displays
different fields based on the content types, but the
underlying content model is the same. Thus we are
able to simplify the experience of our users and
keep a consistent data model.

We have chosen to use Markdown as the format
to input text. Our editors were used to it as they
manage projects on Basecamp thus the transition
was not complicated. We have taken this decision
to prevent users from inadvertently breaking the
layout of the website. But of course Cloud CMS has
a classic WYSWIG editor available.

Graph
For us, starting working with Cloud CMS was a little
bit surprising. Used to work with relational data-
bases we had to face new technologies and concept
that are not common among CMS’s. We knew that
we would be using a NoSQL database, but we dis-
covered that actually we had to deal with a graph.
The documentation that mentions OUTGOING and
INCOMING relations pointed us into that direction.
We had no idea what were those, thus after some
googling, we were introduced to graphs and its
theory. (This is not necessary to work with the CMS,
but it is very interesting...)

In its implementation of MongoDB, Cloud CMS uses
many concepts of Graph databases. Thus you can
not only query documents based on some param-
eters, or index, but you can also query documents
based on the relation, and the direction of this rela-
tion from on document to another or others.

Fig. 7 - Graph displaying an article (center) and all
the incoming (←) and outgoing (→) relations

Although very useful, this approach challenges the
usual understanding of items and categories as an
article which has a “parent” relation to another ar-
ticle can be a node that links to many articles. The
parent article becomes the de facto category, but it
is just an article. Thus it is easy to query all ar-
ticles “authored” by someone, or all the document
related to another document. The relations are by
themselves JSON object, thus they can be enhanced
with their own properties.

Versioning
All content in Cloud CMS is versioned. Thus the user
can easily go back to a previous version or com-
pare changes between versions. Cloud CMS even
features the ability to branch content. It works like
Git. But through a visual interface for the content
editor, and of course you can access those features
through the API. Branching is a powerful mecha-
nism that let the user publish batches of content at
a certain point in time. New content can be pub-
lished when a branch is released (merged to the
master), but a release can as well modify existing
content and merge the branch to the master branch
at a future date. This is really powerful as you could
imagine a news website, that published a very short
article for a breaking news, while an extended ver-
sion of that article is being written, and approved,
and then released.

